
Chapter 34 –THE MULTI-COMPONENT 

RANDOM PHASE APPROXIMATION 

 

 

1. COMPRESSIBLE POLYMER MIXTURE 

 

Consider a homogeneous mixture consisting of m polymer components. Components are 

homopolymers, blocks in copolymers or solvents. Within the Random Phase 

Approximation formalism (De Gennes, 1979; Benmouna et al, 1987; Akcasu-

Tombakoglu, 1990) for compressible mixtures, the scattering cross section for this 

system is expressed in general terms as follows: 
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Here )Q(S is an m*m matrix and  is a column vector containing the m scattering length 

densities. 
T

  is the “transpose” row vector. The fully interacting scattering factors 

)Q(S are expressed in terms of the non-interacting (so called “bare”) scattering factors 

)Q(S0  and inter-monomer interaction potentials W  as follows: 
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This equation can easily be derived using the linear response approach without the 

incompressibility constraint. The incompressibility condition simplifies things as 

described next.  

 

 

2. INCOMPRESSIBLE POLYMER MIXTURE 

 

Now consider one of the m polymer components as the “background” component. This 

can be a homopolymer or a solvent. It cannot be a block that belongs to a copolymer. 

Imposing the incompressibility condition eliminates the background component. This 

leaves (m-1) explicit components. Even though this formalism is general, it is described 

here explicitly for four components (m = 4). Component 4 is referred to as the 

“background” component. The Random Phase Approximation formalism for 

incompressible mixtures yields the following macroscopic scattering cross section: 
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In this general RPA formalism (Akcasu-Tombakoglu, 1990; Hammouda, 1993) )Q(S is 

an (m-1)*(m-1) matrix and  is an (m-1) column vector for the scattering length density 

differences (the scattering length density of the background component is subtracted for 

each component). The new general relation follows: 
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The “bare” scattering factor )Q(S0 is a diagonal matrix for homopolymer blends and 

homopolymer solutions. Mixtures containing copolymers contain off-diagonal elements.  
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The interaction matrix is expressed in terms of the bare scattering factor for the 

background component and the various Flory-Huggins interaction parameters. 
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The various scattering length densities for the various components are given by: 

 

 4ii   for i = 1,2,3.     (7) 

 

The incompressibility assumption in this case becomes: 

 

 v1n1(Q) + v2n2(Q) + v3n3(Q) + v4n4(Q) = 0.   (8) 
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Note that the spinodal condition is obtained for 
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Here 1  is the identity matrix and  ...Det  denotes the determinant of a matrix.  



 

 

3. THE SINGLE-CHAIN FORM FACTORS 
 

The various single-chain form factors for homopolymers and block copolymers are 

expressed as follows: 
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For Gaussian chains, the radii of gyration are given in terms of the degree of 

polymerization ni, and statistical segment lengths ai as follows: 
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The last expression is better explained through examples. This is done next. Consider 

examples of block copolymer sequences. 

 
 

Figure 1: Examples of block copolymer sequences.  

 

F(Q) is used for the two blocks under consideration and E(Q) is used for the blocks in-

between. Some inter-block form factors are given here: 
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These results are valid for Gaussian chains following a random walk (theta condition). 

For fully swollen chains, the excluded volume parameter approach could be used.  

 

 

4. BINARY HOMOPOLYMER BLEND MIXTURE 

 

The simplest case to consider is that of a binary blend mixture of two homopolymers 

(components 1 and 2). In this case, component 2 is taken to be the background 

component. The results are:  
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This is the so-called de Gennes formula (De Gennes, 1979) used to describe binary 

polymer blends in the mixed-phase region.  

 

 

5. TERNARY HOMOPOLYMER BLEND MIXTURE 

 

The case of a ternary homopolymer mixture is worked out similarly. Component 3 is 

taken to be the background component. The results are: 

 

 )Q(Pvn)Q(S 1111

0

11       (14) 

 )Q(Pvn)Q(S 2222

0

22   

 )Q(Pvn)Q(S 3333

0

33   

 

 
0

13

0

33

11
v

2
)Q(S

1
)Q(v


     (15) 

 
0

23

0

33

22
v

2
)Q(S

1
)Q(v


  

 
0

23

0

13

0

12

0

33

12
vvv)Q(S

1
)Q(v








  

 

The partial scattering factors for the fully interacting mixture are as follow: 
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Recall that the cross section for an incompressible ternary blend mixture is given by 

(Benmouna et al, 1987; Akcasu-Tombakoglu, 1990): 
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This case applies to a ternary polymer mixture in the homogeneous phase region. 

 

 

6. BLEND MIXTURE OF A COPOLYMER AND A HOMOPOLYMER 

 

The case of a homopolymer and a copolymer mixture is also readily obtained from the 

RPA formalism. In this case, the background component is taken to be the homopolymer 

(component 3). The diblock is formed of components 1-2. The results follow.  
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The (Q) dependence has been dropped to lighten the notation.  

 

 

7. THE DIBLOCK COPOLYMER CASE 

 

The RPA result for polymer mixtures containing only copolymers (no homopolymers or 

solvent) is more complex and will not be included here. It has, however, been worked out 



explicitly using a matrix notation and assuming one of the blocks as the background 

component. The result for the simple case of a diblock copolymer is included here.  
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This is the so-called Leibler formula (Leibler, 1980). This formula can be derived using 

the linear response approach. Note that the binary blend case is recovered by setting the 

bare scattering factor cross term 0)Q(S0

12  .  

 

 

8. THE TRIBLOCK COPOLYMER CASE 

 

Consider a triblock copolymer in solution. In our terminology, this is a four “component” 

case with the triblock as components 1-2-3 and the solvent as component 4. Block 1 is 

connected to block 2 which is connected to block 3. Block 1 is connected to block 3 only 

through Block 2 (not directly). Consider component 4 as the “background” component 

and apply the multi-component RPA formula: 
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In order to work out the various elements Sij(Q), 3*3 matrix inversion and matrix 

multiplication are needed. The result is too lengthy to reproduce here. The derivation is, 

however, straightforward (Akcasu et al, 1993).   

 

 

9. MIXTURE OF POLYELECTROLYTES  

 

Consider a binary mixture containing a charged polymer (polyelectrolyte). The RPA 

formalism can be adapted to include charge effects. The scattering equations for a binary 

mixture (where component 1 is a polyelectrolyte) are summarized here (Benmouna-

Vilgis, 1991).  
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vDH(Q) is the extra “Debye-Huckel” term that accounts for Coulomb interactions, lB is the 

Bjerrum length given by 
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 , f is the electron charge fraction per monomer and 

salt is the salt volume fraction. v11 is the interaction factor (v1
2v11 is the so-called 

“excluded volume”). As described previously for incompressible neutral polymer 

mixtures, the scattering cross section for polyelectrolyte mixtures is given by: 
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n1, v1, 1, n2, v2, 2, are the degree of polymerization, the specific volume and the volume 

fraction for components 1 and 2 respectively.  P1(Q) and P2(Q) are the familiar Debye 

functions for Gaussian coils. This describes the general case of a polymer blend. If the 

binary mixture is a polyelectrolyte solution instead, then n2 = 1, P2(Q) = 1 and v11 

becomes independent of Q.  

 

Consider the following parameters for a polyelectrolyte solution: 

 

f= 0.5        (23) 

n1 = 1000 

1 = 0.04 

v1 = 100 Å3  

salt = either 0.01 (small salt addition) or 0.1 (large salt addition) 

vsalt = 100 Å3  

lB = 10 Å  

v11 = 0.05 Å-3  



Rg1 = 100 Å. 

 

The scattering factor S11(Q) is plotted for two salt conditions. The polyelectrolyte peak is 

observed when small amount of salt is added. When lots of salt is added, the “interaction” 

peak disappears due to the screening of Coulomb interactions.  
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Figure 2: Variation of the scattering factor S11(Q) for two salt conditions.  

 

The polyelectrolyte interaction peak position obtained corresponds to the maximum in 

the S11(Q) function. The Debye function is approximated by a simple form and the 

notation is modified for convenience. 
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The peak position is obtained for the condition: 
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This implies:  

 

)Q('G)Q(F)Q('F maxmax

2

max      (26) 

 

 
2

1g1

B1122
max

Rv

l8n
Q


 . 

 

The so-called Lifshitz line corresponds to the condition for which the polyelectrolyte 

interaction peak disappears (i.e., Qmax = 0).  

 

The spinodal temperature corresponds to the “blowing up” of the scattered intensity; i.e., 

when the denominator becomes equal to zero. 
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The interaction factor v11 is plotted as function of salt volume fraction salt. v11 is related 

to the Flory-Huggins interaction parameter which depends (inversely) on temperature.  
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Figure 3: Variation of the interaction factor v11 and the of polyelectrolyte peak position 

Qmax with increasing salt volume fraction salt. The spinodal line and the Lifshitz line are 

included.  

 

The polyelectrolyte peak feature is due to the modified monomer-monomer interactions 

that become characterized by two sizes: the actual monomer size and the screened 

Coulomb interaction distance (represented by 1 ). This produces a “correlation hole” 

effect. The screened Debye-Huckel interaction potential varies like 

r/)rexp(~)r(VDH  . Charged interactions tend to stabilize the phase diagram and favor 

mixing. Adding salt tends to favor demixing. The interaction factor v11 is related to the 

Flory-Huggins interaction parameter 12 which is inversely proportional to temperature. 

The RPA approach outlined here can apply to more complex polymer mixtures 

containing polyelectrolytes and neutral polymers.  

 

 



10. DISCUSSION 

 

The RPA approach described here can handle more complex polymer mixtures 

containing complex architectures and blockiness (Hammouda, 1993). It amounts to 

inverting and multiplying larger matrices. The effect of chain stiffness has also been 

included in limited cases. Mixtures of flexible and stiff polymer chains are characterized 

by the familiar spinodal condition as well as by the isotropic-to-nematic phase transition 

(Hammouda, 1993).  

 

It should be emphasized, however, that this mean-field approach applies strictly in the 

mixed-phase region (not too close to the phase boundary line). Non-mean field 

corrections have been worked out. These are, however, outside the scope of this effort.  
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QUESTIONS 

 

1. Write down the generalized Random Phase Approximation formula for multi-

component incompressible polymer mixtures. Does it apply to pure copolymers? 



2. Write down the scattering cross section for a multi-component polymer mixture of 

arbitrary composition in matrix form.  

3. What is the size of the matrix to be inverted for an incompressible mixture with four 

polymer components? 

4. Write down the so-called de Gennes formula for scattering from a binary polymer 

blend mixture. Define the various terms.  

5. Write down the S11(Q) interacting scattering factor for a ternary polymer blend 

mixture.  

6. Write down the so-called Leibler formula for scattering from a diblock copolymer.  

7. Stiff (rodlike) polymers are characterized by orientational phase transitions beside the 

spinodal and binodal lines. Name the two best known phase transitions. 

8. What is the extra interaction term which is added to account for screened charge-

charge interactions and thereby extend the multicomponent RPA approach to included 

polyelectrolytes?   

 

 

ANSWERS 

 

1. The Random Phase Approximation general formula for multi-component 

incompressible polymer mixtures expresses the fully interacting scattering factor )Q(S in 

terms of the “bare” (non-interacting) scattering factor )Q(S
0

and the various interaction 

factors )Q(v as )Q(v)Q(S)Q(S
1
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
. This does not apply to pure copolymers since a 

“background” component (either a homopolymer or a solvent) is required.  

2. The scattering cross section for a multi-component polymer mixture of arbitrary 

composition is expressed as  (Q).S. 
d
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is a column vector containing 

all of the scattering length densities and (Q)S  is a matrix containing all of the scattering 

factors.  

3. A homogeneous polymer mixture with four components generates a 3*3 RPA matrix 

to be inverted. The fourth component is taken to be the background component.  

4. The de Gennes formula for scattering from a binary polymer blend mixture is 

expressed as 
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scattering factors, 12  is the Flory-Huggins interaction parameter and 0v  is a reference 

volume usually expressed as 210 vvv   where v1 and v2 are the specific monomer 

volumes.  

5. The scattering factor for a ternary polymer blend mixture is given by 
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 . The various factors are 

defined in the text.  



6. The Leibler formula is expressed as 

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7. Stiff polymers are characterized by the spinodal and binodal temperatures as well as 

orientational transitions leading from the isotropic to the nematic or smectic phases.  

8. The extra interaction term added to extend the multicomponent RPA approach to 

include polyelectrolytes is the Debye-Huckel factor 
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  where v1 is 

the monomer volume, 1  is the screening length, and lB is the Bjerrum length given by 
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